3.630 \(\int \frac {(a+b \tan (e+f x))^2}{\sqrt [3]{d \sec (e+f x)}} \, dx\)

Optimal. Leaf size=119 \[ -\frac {3 d \left (2 a^2-3 b^2\right ) \sin (e+f x) \, _2F_1\left (\frac {1}{2},\frac {2}{3};\frac {5}{3};\cos ^2(e+f x)\right )}{8 f \sqrt {\sin ^2(e+f x)} (d \sec (e+f x))^{4/3}}-\frac {15 a b}{2 f \sqrt [3]{d \sec (e+f x)}}+\frac {3 b (a+b \tan (e+f x))}{2 f \sqrt [3]{d \sec (e+f x)}} \]

[Out]

-15/2*a*b/f/(d*sec(f*x+e))^(1/3)-3/8*(2*a^2-3*b^2)*d*hypergeom([1/2, 2/3],[5/3],cos(f*x+e)^2)*sin(f*x+e)/f/(d*
sec(f*x+e))^(4/3)/(sin(f*x+e)^2)^(1/2)+3/2*b*(a+b*tan(f*x+e))/f/(d*sec(f*x+e))^(1/3)

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {3508, 3486, 3772, 2643} \[ -\frac {3 d \left (2 a^2-3 b^2\right ) \sin (e+f x) \text {Hypergeometric2F1}\left (\frac {1}{2},\frac {2}{3},\frac {5}{3},\cos ^2(e+f x)\right )}{8 f \sqrt {\sin ^2(e+f x)} (d \sec (e+f x))^{4/3}}-\frac {15 a b}{2 f \sqrt [3]{d \sec (e+f x)}}+\frac {3 b (a+b \tan (e+f x))}{2 f \sqrt [3]{d \sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Tan[e + f*x])^2/(d*Sec[e + f*x])^(1/3),x]

[Out]

(-15*a*b)/(2*f*(d*Sec[e + f*x])^(1/3)) - (3*(2*a^2 - 3*b^2)*d*Hypergeometric2F1[1/2, 2/3, 5/3, Cos[e + f*x]^2]
*Sin[e + f*x])/(8*f*(d*Sec[e + f*x])^(4/3)*Sqrt[Sin[e + f*x]^2]) + (3*b*(a + b*Tan[e + f*x]))/(2*f*(d*Sec[e +
f*x])^(1/3))

Rule 2643

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1)*Hypergeomet
ric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2])/(b*d*(n + 1)*Sqrt[Cos[c + d*x]^2]), x] /; FreeQ[{b, c, d, n
}, x] &&  !IntegerQ[2*n]

Rule 3486

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*(d*Sec[
e + f*x])^m)/(f*m), x] + Dist[a, Int[(d*Sec[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e, f, m}, x] && (IntegerQ[2
*m] || NeQ[a^2 + b^2, 0])

Rule 3508

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[(b*(d*Se
c[e + f*x])^m*(a + b*Tan[e + f*x]))/(f*(m + 1)), x] + Dist[1/(m + 1), Int[(d*Sec[e + f*x])^m*(a^2*(m + 1) - b^
2 + a*b*(m + 2)*Tan[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && NeQ[a^2 + b^2, 0] && NeQ[m, -1]

Rule 3772

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x])^(n - 1)*((Sin[c + d*x]/b)^(n - 1)
*Int[1/(Sin[c + d*x]/b)^n, x]), x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rubi steps

\begin {align*} \int \frac {(a+b \tan (e+f x))^2}{\sqrt [3]{d \sec (e+f x)}} \, dx &=\frac {3 b (a+b \tan (e+f x))}{2 f \sqrt [3]{d \sec (e+f x)}}+\frac {3}{2} \int \frac {\frac {2 a^2}{3}-b^2+\frac {5}{3} a b \tan (e+f x)}{\sqrt [3]{d \sec (e+f x)}} \, dx\\ &=-\frac {15 a b}{2 f \sqrt [3]{d \sec (e+f x)}}+\frac {3 b (a+b \tan (e+f x))}{2 f \sqrt [3]{d \sec (e+f x)}}+\frac {1}{2} \left (2 a^2-3 b^2\right ) \int \frac {1}{\sqrt [3]{d \sec (e+f x)}} \, dx\\ &=-\frac {15 a b}{2 f \sqrt [3]{d \sec (e+f x)}}+\frac {3 b (a+b \tan (e+f x))}{2 f \sqrt [3]{d \sec (e+f x)}}+\frac {1}{2} \left (\left (2 a^2-3 b^2\right ) \left (\frac {\cos (e+f x)}{d}\right )^{2/3} (d \sec (e+f x))^{2/3}\right ) \int \sqrt [3]{\frac {\cos (e+f x)}{d}} \, dx\\ &=-\frac {15 a b}{2 f \sqrt [3]{d \sec (e+f x)}}-\frac {3 \left (2 a^2-3 b^2\right ) \cos ^2(e+f x) \, _2F_1\left (\frac {1}{2},\frac {2}{3};\frac {5}{3};\cos ^2(e+f x)\right ) (d \sec (e+f x))^{2/3} \sin (e+f x)}{8 d f \sqrt {\sin ^2(e+f x)}}+\frac {3 b (a+b \tan (e+f x))}{2 f \sqrt [3]{d \sec (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 3.94, size = 209, normalized size = 1.76 \[ \frac {3 d \sin (e+f x) (a+b \tan (e+f x))^2 \left (\frac {\left (\left (2 a^2-3 b^2\right ) \cot (e+f x)+4 a b\right ) \left (\left (2 a^2-3 b^2\right ) \sqrt {\sin ^2(e+f x)} \, _2F_1\left (-\frac {1}{6},\frac {1}{2};\frac {5}{6};\sec ^2(e+f x)\right )-4 a b \cos (e+f x) \sqrt {-\tan ^2(e+f x)}\right )}{\sqrt {-\tan ^2(e+f x)} \left (\left (2 a^2-3 b^2\right ) \sqrt {\sin ^2(e+f x)} \cot (e+f x)+4 a b \sin (e+f x)\right )}+b^2\right )}{2 f (d \sec (e+f x))^{4/3} (a \cos (e+f x)+b \sin (e+f x))^2} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*Tan[e + f*x])^2/(d*Sec[e + f*x])^(1/3),x]

[Out]

(3*d*Sin[e + f*x]*(a + b*Tan[e + f*x])^2*(b^2 + ((4*a*b + (2*a^2 - 3*b^2)*Cot[e + f*x])*((2*a^2 - 3*b^2)*Hyper
geometric2F1[-1/6, 1/2, 5/6, Sec[e + f*x]^2]*Sqrt[Sin[e + f*x]^2] - 4*a*b*Cos[e + f*x]*Sqrt[-Tan[e + f*x]^2]))
/((4*a*b*Sin[e + f*x] + (2*a^2 - 3*b^2)*Cot[e + f*x]*Sqrt[Sin[e + f*x]^2])*Sqrt[-Tan[e + f*x]^2])))/(2*f*(d*Se
c[e + f*x])^(4/3)*(a*Cos[e + f*x] + b*Sin[e + f*x])^2)

________________________________________________________________________________________

fricas [F]  time = 0.47, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (b^{2} \tan \left (f x + e\right )^{2} + 2 \, a b \tan \left (f x + e\right ) + a^{2}\right )} \left (d \sec \left (f x + e\right )\right )^{\frac {2}{3}}}{d \sec \left (f x + e\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))^2/(d*sec(f*x+e))^(1/3),x, algorithm="fricas")

[Out]

integral((b^2*tan(f*x + e)^2 + 2*a*b*tan(f*x + e) + a^2)*(d*sec(f*x + e))^(2/3)/(d*sec(f*x + e)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \tan \left (f x + e\right ) + a\right )}^{2}}{\left (d \sec \left (f x + e\right )\right )^{\frac {1}{3}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))^2/(d*sec(f*x+e))^(1/3),x, algorithm="giac")

[Out]

integrate((b*tan(f*x + e) + a)^2/(d*sec(f*x + e))^(1/3), x)

________________________________________________________________________________________

maple [F]  time = 0.59, size = 0, normalized size = 0.00 \[ \int \frac {\left (a +b \tan \left (f x +e \right )\right )^{2}}{\left (d \sec \left (f x +e \right )\right )^{\frac {1}{3}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tan(f*x+e))^2/(d*sec(f*x+e))^(1/3),x)

[Out]

int((a+b*tan(f*x+e))^2/(d*sec(f*x+e))^(1/3),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \tan \left (f x + e\right ) + a\right )}^{2}}{\left (d \sec \left (f x + e\right )\right )^{\frac {1}{3}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))^2/(d*sec(f*x+e))^(1/3),x, algorithm="maxima")

[Out]

integrate((b*tan(f*x + e) + a)^2/(d*sec(f*x + e))^(1/3), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (a+b\,\mathrm {tan}\left (e+f\,x\right )\right )}^2}{{\left (\frac {d}{\cos \left (e+f\,x\right )}\right )}^{1/3}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*tan(e + f*x))^2/(d/cos(e + f*x))^(1/3),x)

[Out]

int((a + b*tan(e + f*x))^2/(d/cos(e + f*x))^(1/3), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + b \tan {\left (e + f x \right )}\right )^{2}}{\sqrt [3]{d \sec {\left (e + f x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))**2/(d*sec(f*x+e))**(1/3),x)

[Out]

Integral((a + b*tan(e + f*x))**2/(d*sec(e + f*x))**(1/3), x)

________________________________________________________________________________________